A detailed chemical kinetic mechanism for the simulation of gasoline surrogate mixtures has been assembled from existing LLNL mechanisms for n-heptane, iso-octane [1], toluene and C5-C6 olefins [2] and validated using experimental data from shock tubes, stirred reactor, and rapid compression machines [3]. The detailed kinetic model has been used to estimate a surrogate composition targeting a RD387 gasoline (LLNL surrogate) and the obtained formulation was used in comparisons with gasoline experimental flame speeds available in literature [4]. The same surrogate composition coupled with the detailed mechanism here available was successfully applied to the simulation of an HCCI engine under naturally aspirated and boosted conditions [5]. A reduced version of the kinetic mechanism is also available for engine numerical applications [4]. Modeling results obtained from this mechanism were also compared with LLNL surrogate and RD387 rapid compression machine data across a wide range of temperature pressure and equivalence ratios [6-7]. The mechanism performs well at both low and high temperatures and over a broad pressure range important for internal combustion engines.

Download files (CHEMKIN format):

Reference for Mechanism

Mehl M., W.J. Pitz, C.K. Westbrook, H.J. Curran, "Kinetic modeling of gasoline surrogate components and mixtures under engine conditions", Proceedings of the Combustion Institute 33:193-200 (2011).

Other References

  1. Mehl M., W.J. Pitz, M. Sjöberg and J.E. Dec, "Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine", SAE 2009 International Powertrains, Fuels and Lubricants Meeting, SAE Paper No. 2009-01-1806, Florence, Italy, 2009. Available at www.sae.org.
  2. Mehl, M., W.J. Pitz, C.K. Westbrook, K. Yasunaga, C. Conroy, H.J Curran, "Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions", Proceedings of the Combustion Institute, 33:201-208 (2011)
  3. Mehl M., W.J. Pitz, C.K. Westbrook, H.J. Curran, "Kinetic modeling of gasoline surrogate components and mixtures under engine conditions", Proceedings of the Combustion Institute, 33:193-200 (2011).
  4. Mehl M., J.Y. Chen , W.J. Pitz, S.M. Sarathy, C.K. Westbrook, "An Approach for Formulating Surrogates for Gasoline with Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling", Energy and Fuels, 25:5215-5223 (2011)
  5. Mehl M., W.J. Pitz, S.M. Sarathy, Y. Yang, J.E. Dec "Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release", SAE 2012 World Congress & Exhibition, SAE Paper No. 2012-01-1109, Detroit, MI, USA, 2012. www.sae.org.
  6. Kukkadapu G., K. Kumar, C.-J. Sung, M. Mehl, W. J. Pitz, "Autoignition of Gasoline and its Surrogates in a Rapid Compression Machine", International Symposium on Combustion, Warsaw, 2012. Submitted.
  7. Kukkadapu G., K. Kumar, C.-J. Sung, M. Mehl, W. J. Pitz, "Experimental and Surrogate Modeling Study of Gasoline Ignition in a Rapid Compression Machine", Combustion and Flame, 2012. Submitted.

 

 

 

 

LLNL-MI-536371